EZ-BrdU TM Kit A Complete Kit for Measuring Cell Proliferation by Flow Cytometry ## **Technical Support** #### Web www.tonbobio.com #### **Email** support@tonbobio.com #### Phone 1-855-848-6626 toll-free (858) 888-7300 local This kit is developed for Research Use Only. ## **EZ-BrdU™** A Complete Kit for Measuring Apoptosis by Flow Cytometry #### Description The EZ-BrdU™ Kit provides a two color staining method for measuring cell proliferation by multiparameter flow cytometric analysis of DNA replication and cellular DNA content/cell cycle position. The kit contains reagents including: BrdU solution for incorporation into cells actively synthesizing DNA; positive and negative fixed control cells for assessing reagent performance; washing and rinsing buffers for processing individual steps in the assay; fluorescein labeled anti-BrdU antibody for labeling BrdU-incorporated DNA; and propidium iodide/RNase A solution for counter staining the total DNA. #### Contents The EZ-BrdU Kit is shipped in one container which houses two packages. One package is provided at ambient temperature and should be stored at 2-8° C upon arrival. The other is packaged in a styrofoam container with frozen ice packs and the contents should be stored at -20° C upon receipt. We have determined the shipping method is adequate to maintain the integrity of the kit components. Upon arrival, store the reagents at the appropriate temperatures. Page 1 EZ-BrdU™ Kit Manual #### Precautions and Warnings The components of this kit are for Research Use Only and are not intended for diagnostic procedures. Component part numbers TNB-6600-NC12, TNB-6600-WB15, TNB-6600-RB17 and TNB-6600-PR18 contain 0.05% (w/v) sodium azide as a preservative. These materials are harmful if swallowed; avoid skin contact, wash immediately with water. See Material Safety Data Sheets. Component TNB-6600-DB16 contains 2N HCL. This material is harmful if swallowed; avoid skin contact; wash immediately with water. See Material Safety Data Sheets. #### Reagents and Materials Required, but not supplied: - 1. Flow cytometer capable of measuring red and green fluorescence. - 2. Distilled water - 3. 70% (v/v) ethanol - 4. Ice bucket - 5. 12 x 75 mm flow cytometry polystyrene test tubes - 6. Pipets and pipetting aids The reagent bottles have colored caps to aid in their identification. Sufficient reagents are provided to process 50 cell suspensions and an additional 5 Positive Controls. The Positive Controls are provided at approximately 1 x 10⁶ cells per mL in 70% (v/v) ethanol. The control cells are derived from a human lymphoma cell line that has been fed BrdU and have been fixed as described in this manual. Page 2 EZ-BrdU™ Kit Manual #### **EZ-BrdU Kit Components:** | COMPONENT | COLOR CODE | PART NUMBER | VOLUME | STORAGE | |--------------------------|--------------|---------------|-------------|---------| | Positive Control Cells | white cap | TNB-6600-NC12 | 5.0 mL | -20° C | | BrdU Solution | pink cap | TNB-6600-BP13 | 2.0 mL | -20° C | | Wash Buffer | blue cap | TNB-6600-WB15 | 175.0 mL | 2-8° C | | Rinse Buffer | red cap | TNB-6600-RB17 | 130.0 mL | 2-8° C | | Denaturation Buffer | clear cap | TNB-6600-DB16 | 65.0 mL | 2-8° C | | Neutralization Buffer | green cap | TNB-6600-NB14 | 65.0 mL | 2-8° C | | FITC anti-BrdU (PRB-1) | orange cap | TNB-6600-FM20 | $325~\mu L$ | 2-8° C | | PI/RNase Staining Buffer | amber bottle | TNB-6600-PR18 | 23.5 mL | 2-8° C | #### **Assay Principle** The incorporation of BrdU into newly synthesized DNA by actively cycling cells is one method for measuring the changing amount of cellular DNA during cell proliferation through each of the cell cycle phases. As a thymidine analog, BrdU is preferentially incorporated into newly replicated DNA which can then be subsequently labeled and analyzed to determine relative DNA content and cell cycle position. Incorporation of BrdU is most commonly detected using anti-BrdU antibodies. This requires that cellular DNA be denatured in order for the BrdU epitope to be accessible to the antibody. This can be accomplished through heat treatment, acid treatment, enzymatic digestion or UV light exposure and each method has advantages and disadvantages. The EZ-BrdU Kit employs an acid denaturation step and the low acid method used helps reduce damage to other cellular proteins. After the denaturation step, cells are stained with a FITC anti-BrdU antibody and total DNA is counterstained with a PI/RNase A solution. Two color flow cytometry can then be used to analyze cells that have incorporated BrdU (proliferating cells) in terms of their cell cycle position (G0/1, S, or G2/M phase). Page 3 EZ-BrdU™ Kit Manual ### EZ-BrdU Cell Proliferation Assay Workflow Page 4 EZ-BrdU™ Kit Manual #### Labeling of Cells with BrdU Labeling of newly synthesized cellular DNA requires prolonged exposure of actively cycling cells to BrdU. There are many different protocols available and the methods described in this manual are intended to be used as guidelines. Determine the doubling time of the test cell population at least a day ahead of beginning the experiment in order to optimize pulse labeling times. As a negative control, cells from the same population that are not BrdU-pulsed can be used to determine background staining levels. #### Labeling Cells in Culture On the day of the experiment, add the BrdU solution at a point prior to the completion of the synthesis phase (S-phase) of the cycle. The cells should be in an exponential growth phase for a minimum of two passages before beginning the experiment. Take care when adding the BrdU solution so as not to disturb the cells and disrupt their cycling time. Add 20 μ L of the BrdU stock solution (TNB-6600-BP13, pink cap) per 10 mL of cell culture medium. Incubate the cells at 37° C in a CO₂ incubator for the desired length of time, as previously determined. An actively proliferating cell line may require a 20-40 minute incubation, while slow growing cells could require incubation times of up to 36 hours. For this reason, investigators should determine the optimal BrdU pulse duration for each cell system under investigation. #### Labeling Cells in vivo There are two common methods for BrdU labeling of cells in a live mouse or rat. Intraperitoneal injection of a BrdU solution, or ingestion of BrdU that has been added to drinking water. To label through injection, use 334 μ L (1 mg) of BrdU solution and inject intraperitoneally. Incorporated BrdU can be detected in the bone marrow and elsewhere within as little as 1 hour post injection. To label through ingestion, add 300 μ L of BrdU solution per mL of drinking water. Water should be prepared fresh daily and feeding should extend over the course of a full week for best incorporation with little associated toxicity. Page 5 EZ-BrdU™ Kit Manual #### **Cell Fixation Procedure** After cells have been grown in the presence of the BrdU solution, they must be fixed to permeabilize the membranes. This allows the anti-BrdU antibody access to the nucleus of the cell. A convenient method to accomplish this is with 70% ice cold ethanol. Once cells are fixed in ethanol, they may be stored at -20° C until ready to use. #### Permeabilization and Fixation Procedure - 1. Centrifuge the cells for 5 minutes (300 x g) and remove the supernatant by aspiration. - 2. Resuspend the cells at a concentration of 1 to 5 x 10⁶ cells / mL in Wash Buffer (blue cap). - 3. Repeat #1 above. - 4. Resuspend the cell pellet in the residual Wash Buffer (blue cap) left after aspiration by gently vortexing the tube. - 5. Adjust the cell concentration to 1 to 2 x 10^6 cells/mL in 70% (v/v) ice cold ethanol. - 6. Store cells in 70% ethanol at -20° C over night or until ready to use (at least 18 hours) Page 6 EZ-BrdU™ Kit Manual #### **EZ-BrdU Protocol** The following protocol describes the method for measuring cell proliferation in the Positive Control cells that are provided in the EZ-BrdU Kit. The same procedure should be employed for measuring cell proliferation in the cells that have undergone fixation and permeabilization by the researcher. - Resuspend the positive (white cap) control cells by swirling the vial. Remove a 1 mL aliquot of the control cell suspension (approximately 1 x 10⁶ cells per 1 mL) and place in 12 x 75 mm centrifuge tubes. Centrifuge (300 x g) the control cell suspension for 5 minutes and remove the 70% (v/v) ethanol by aspiration, being careful to not disturb the cell pellet. - Resuspend the tube of control cells with 1 mL of Wash Buffer (blue cap) per tube. Centrifuge as before and remove the supernatant by aspiration. - 3. Repeat the Wash Buffer treatment (#2 above). - 4. Resuspend the cell pellet in 1 mL of the Denaturation Buffer (clear cap). - 5. Incubate 30 minutes at room temperature. - 6. Centrifuge cells for 10 minutes at 400 x g. - 7. Aspirate supernatant and immediately add 1 mL of Neutralization Buffer (green cap). - 8. Centrifuge cells for 10 minutes at 400 x g. - 9. Wash cells one time with 2 mL Rinse Buffer (red cap). - 10. Resuspend the cell pellet in 0.1 mL of the Antibody Solution (prepared as described below). | Antibody Solution | 1 Assay | 5 Assays | 10 Assays | |-----------------------------|--------------|-------------------------|---------------| | FITC anti-BrdU (orange cap) | 5.00 μL | 25.00 $\mu \mathrm{L}$ | 50.00 μ L | | Rinse Buffer (red cap) | 95.00 μL | 475.00 $\mu \mathrm{L}$ | 950.00 μL | | Total Volume | 100.00 uL | 500.00 uL | 1000.00 μL | - 11. Incubate the cells with Antibody Solution in the dark for 60 minutes at room temperature. - 12. Add 0.5 mL of the PI/RNase A Solution (amber bottle) to the tube containing the Antibody Solution. - 13. Incubate the cells in the dark for 30 minutes at room temperature. - 14. Analyze the cells in the PI/RNase A Solution by flow cytometry. - 15. Analyze the cells within 3 hours of staining. #### Flow Cytometric Analysis This assay is run on a flow cytometer equipped with a 488 nm Argon laser. Propidium Iodide (total cellular DNA) and Fluorescein (proliferating cells) are the two dyes being used. Propidium Iodide (PI) fluoresces at about 623 nm and FITC at 520 nm when excited at 488 nm. No fluorescence compensation is required. Two dual parameter and two single parameter displays are created with the flow cytometer data acquisition software. The gating display should be the standard dual parameter DNA doublet discrimination display with the DNA Area signal on the Y-axis and the DNA Width (Becton-Dickinson, Figure 4) or DNA Peak/Integral (Beckman Coulter, Figure 5) signal on the X-axis. From this display, a gate is drawn around the non-clumped cells and the second gated dual parameter display is generated. The normal convention of this display is to put DNA (Linear Red Fluorescence) on the X-axis and the FITC anti-BrdU (Log Green Fluorescence) on the Y-axis (see bottom plot, Figure 4). Two single parameter gated histograms, DNA and FITC anti-BrdU, can also be added but are not necessary. By using the dual parameter display method, not only are cycling cells resolved but the total cell cycle is displayed. The dual parameter histograms of the control cells should look like Figure 3 below. Figure 3: Representative Positive Control Cell Staining Page 8 EZ-BrdU™ Kit Manual ## Flow Cytometer Setup for Becton Dickinson Hardware #### DNA Area #### Typical FACSCaliber™ Gain Settings | Parameter | Amplifier Gain | Detector Gain | |------------|---------------------|---------------| | FL 1 | Log | 400 Volts | | FL 3 | 1.46 | 430 Volts | | FL 3 Width | .87 | | | FL 3 Area | 3.25 | | | | Threshold- FL 3, 40 | | Figure 4: EZ-BrdU Positive Control Cells #### Flow Cytometer Setup for Beckman Coulter Hardware Figure 5: EZ-BrdU Positive Control Cells Page 10 EZ-BrdU™ Kit Manual #### **Technical Tips** To minimize cell loss during the assay, we recommend using a single 12 x 75 mm polystyrene flow cytometry tube per sample throughout the staining procedure and analysis. An electrostatic charge can build up on the sides of the tube causing cells to adhere to the tube wall. The sequential use of multiple tubes can result in significant cell loss during the assay. We also recommend that care is taken throughout the staining procedure to wash cells from the side of the tube. Cells can also be lost through the use of pipetting for mixing steps, as cells can adhere to the plastic pipette tips. #### References Gratzner HG. 1982. Science. 218: 474-475. Dolbeare F, Gratzner HG, Pallavicini MG and Gray JW. 1983. Proc Natl Acad Sci USA. 80: 5573-5577. Begg AC, McNally NJ, Shrieve DC and Karchner H. 1985. Cytometry. 6: 620-626. Falini B, Canino S, Sacchi S, Ciani C, Martinelli MF, Gerdes J, Stein H, Pileri S, Gobbi M, Fagioli M, Minelli O and Flenghi L. 1988. Br J Hematol. 69: 311-320. Williamson K, Halliday I, Hamilton P, Ruddell J, Varma M, Maxwell P, Crockard A and Rowland B. 1993. Cell Prolif. 26: 115-124. Li X, Tragano F, Melamed MR and Darzynkiewicz Z. 1994. Int J Oncol. 4: 1157-1161. Page 11 EZ-BrdU™ Kit Manual #### Notes: Page 12 EZ-BrdU™ Kit Manual ## Also available from Tonbo: | Product Name | Cat. No. | |--|--| | APO-BrdU™ Kit | TNB-6671-KIT | | APO-DIRECT™ Kit | TNB-6611-KIT | | Flow Cytometer Sheath Fluid (30X) | TNB-4600-L600 | | Lymphocyte Separation Medium | TNB-4700-L100 | | RBC Lysis Buffer (10X) | TNB-4300-L100 | | Caspase Inhibitors Z-VAD(OMe)-FMK (General Caspase Inhibitor) Q-VD-OPH (General Caspase Inhibitor) Z-DEVD-FMK (Caspase-3 Inhibitor) Z-IETD-FMK (Caspase-8 Inhibitor) | TNB-1001-M001
TNB-1002-M001
TNB-1003-M001
TNB-1004-M001 | ### **Tonbo Biosciences** 6335 Ferris Square Suite A San Diego, CA 92121 (855) 848-6626 toll-free (858) 888-7300 local orders@tonbobio.com www.tonbobio.com APO-BRDU is a registered trademark of Phoenix Flow Systems. FACScan is a registered trademark of Becton Dickinson. XL is a registered trademark of Beckman Coulter. Rev. 2020/1/27